第三百五十三章 希尔伯特矩阵
爱小说(www.ixs.cc)开通手机站了,手机用户可以登录 m.ixs.cc 进行阅读,效果更好哦!
瞎子也能搞数学?太不可思议了吧!其实瞎子虽然看不见,但也能通过触觉来感知物体的形状。
对于波以来说,心里还是可以感知形状的。
德国数学家波以在1901年发现波以曲面,波以曲面无法定义方位,就如同克莱因瓶与莫比乌斯带。我们可以用几何模形创造出波以曲面,其中一个方法是把拉长的圆盘按照莫比乌斯带的原理连接圆盘边界。波以曲面是三重对称结构,可以找出一条对称轴让波以曲面旋转120?后维持同样的形状。有趣的是,虽然波以有办法画出各种不同形式的波以曲面,但是他却不知道如何用方程式,也就是用参数模型的方式加以表达。
直到1978年,法国数学家莫昂(BernardMorin)才利用计算机找出第1个参数化的方程式,莫昂幼年时就双眼失明,不过却在数学领域功成名就。他不但没有因为双眼视力不如常人而自怨自艾,甚至可以说是失明,强化了莫昂的能力,一般人不容易想象几何结构的其中一个原因,是因为我们通常只注意到表面,却看不到内部可能非常复杂的构造。但失明的莫昂已经非常习惯于用触摸的方式接收信息,任何模型只要让他把玩上几个小时,就算经过多年以后,他还是能保有其形状的鲜明记忆。
对于波以来说,心里还是可以感知形状的。
德国数学家波以在1901年发现波以曲面,波以曲面无法定义方位,就如同克莱因瓶与莫比乌斯带。我们可以用几何模形创造出波以曲面,其中一个方法是把拉长的圆盘按照莫比乌斯带的原理连接圆盘边界。波以曲面是三重对称结构,可以找出一条对称轴让波以曲面旋转120?后维持同样的形状。有趣的是,虽然波以有办法画出各种不同形式的波以曲面,但是他却不知道如何用方程式,也就是用参数模型的方式加以表达。
直到1978年,法国数学家莫昂(BernardMorin)才利用计算机找出第1个参数化的方程式,莫昂幼年时就双眼失明,不过却在数学领域功成名就。他不但没有因为双眼视力不如常人而自怨自艾,甚至可以说是失明,强化了莫昂的能力,一般人不容易想象几何结构的其中一个原因,是因为我们通常只注意到表面,却看不到内部可能非常复杂的构造。但失明的莫昂已经非常习惯于用触摸的方式接收信息,任何模型只要让他把玩上几个小时,就算经过多年以后,他还是能保有其形状的鲜明记忆。
爱小说WWW.IXS.CC努力创造无弹窗阅读环境,大家喜欢就按 Ctrl+D 加下收藏吧,有你们的支持,让我们走得更远!
可以使用回车、←→快捷键阅读