第四百零五章 伯恩赛德引理(图论)
爱小说(www.ixs.cc)开通手机站了,手机用户可以登录 m.ixs.cc 进行阅读,效果更好哦!
1902年,伯恩赛德提出了伯恩赛德引理。
一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色,问共有多少种本质不同的涂色方案。
每个格子可以涂色,可以不涂色,共有16种方案。将16种方案编号。
把本质相同的方案合并:方案1:,方案2:,方案3:,方案4:,方案5:,方案6:,共6种方案。
旋转可以看作是置换,所有置换组成置换群。
如果x通过某个置换可以变成y,说明x和y等价。
与x互相等价的一组元素组成了一个集合,称为x的等价类。
这个问题中,我们要求的就是这样的等价类有多少个。
我们由Burnside‘slemma可得一种公式,这个公式的意思是:等价类的个数=每个置换中不动元的个数和÷置换群大小。|X/G|=/4=6。
也可说为等价类个数=不动元个数的平均数
一个由2*2方格组成的正方形,每个格子上可以涂色或不涂色,问共有多少种本质不同的涂色方案。
每个格子可以涂色,可以不涂色,共有16种方案。将16种方案编号。
把本质相同的方案合并:方案1:,方案2:,方案3:,方案4:,方案5:,方案6:,共6种方案。
旋转可以看作是置换,所有置换组成置换群。
如果x通过某个置换可以变成y,说明x和y等价。
与x互相等价的一组元素组成了一个集合,称为x的等价类。
这个问题中,我们要求的就是这样的等价类有多少个。
我们由Burnside‘slemma可得一种公式,这个公式的意思是:等价类的个数=每个置换中不动元的个数和÷置换群大小。|X/G|=/4=6。
也可说为等价类个数=不动元个数的平均数
爱小说WWW.IXS.CC努力创造无弹窗阅读环境,大家喜欢就按 Ctrl+D 加下收藏吧,有你们的支持,让我们走得更远!
可以使用回车、←→快捷键阅读